A temperature sensitive mutation in the CstF77 subunit of the polyadenylation complex reveals the critical function of mRNA 3’ end formation for a robust heat stress response in plants

Author:

Kim MinsooORCID,Swenson JohnORCID,McLoughlin FionnORCID,Vierling ElizabethORCID

Abstract

AbstractBackgroundHeat Shock Protein 101 (HSP101) in plants and orthologs in bacteria (Caseinolytic peptidase B, ClpB) and yeast (Hsp104) are essential for thermotolerance. To investigate molecular mechanisms of thermotolerance involving HSP101, we performed a suppressor screen in Arabidopsis thaliana of a semi-dominant, missense HSP101 allele, hot1-4 (A499T). Plants carrying the hot1-4 mutation are more heat-sensitive than an HSP101 null mutant (hot1-3), indicating the toxicity of hot1-4 allele.ResultsWe report that one suppressor (shot2, suppressor of hot1-4 2) has a temperature-sensitive, missense mutation (E170K) in the CstF77 (Cleavage stimulation factor 77) subunit of the polyadenylation complex, which is critical for 3’ end maturation of pre-mRNA. RNA-Seq analysis of total RNA depleted of ribosomes reveals that heat treatment causes transcriptional readthrough events in shot2, specifically in highly heat-induced genes, including the toxic hot1-4 gene. In addition, failure of correct transcript processing leads to reduced accumulation of many HSP RNAs and proteins, suppressing heat sensitivity of the hot1-4 mutant, due to reduction of the toxic mutant HSP101 protein. Notably, the shot2 mutation makes plants more sensitive to heat stress in the HSP101 null (hot1-3) and wild-type backgrounds correlated with the reduced expression of other heat-inducible genes required for thermotolerance.ConclusionsOur study reveals the critical function of CstF77 for 3’ end formation of mRNA during heat stress, as well as the dominant role of HSP101 in dictating the outcome of severe heat stress in plants.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3