Highly similar sequence and structure yet different biophysical behaviour: A computational study of two triosephosphate isomerases

Author:

Chávez-García Cecilia,Karttunen MikkoORCID

Abstract

ABSTRACTHomodimeric triosephosphate isomerases (TIM) from Trypanosoma cruzi (TcTIM) and Trypanosoma brucei (TbTIM) have a markedly similar amino acid sequences and three-dimensional structures. However, several of their biophysical parameters, such as their susceptibility to sulfhydryl agents and their reactivation speed after being denatured, have significant differences. The causes of these differences were explored with microsecond-scale molecular dynamics (MD) simulations of three different TIM proteins: TcTIM, TbTIM and a chimeric protein, Mut1. We examined their electrostatic interactions and explored the impact of simulation length on them. The same salt bridge between catalytic residues Lys 14 and Glu 98 was observed in all three proteins but key differences were found in other interactions that the catalytic amino acids form. In particular, a cation-π interaction between catalytic amino acids Lys 14 and His 96, and both a salt bridge and a hydrogen bond between catalytic Glu168 and residue Arg100, were only observed in TcTIM. Furthermore, although TcTIM forms less hydrogen bonds than TbTIM and Mut1, its hydrogen bond network spans almost the entire protein, connecting the residues in both monomers. This work provides new insight on the mechanisms that give rise to the different behaviour of these proteins. The results also show the importance of long simulations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3