Computational and experimental studies of plasmodium falciparum protein PfAMA1 domain-II loop dynamics: implications in PfAMA1-PfRON2 binding event

Author:

Sinha Suman,Biswas Anamika,Mondal Jagannath,Mandal KalyaneswarORCID

Abstract

AbstractProtein-protein interactions are interesting targets for various drug discovery campaigns. One such promising and therapeutically pertinent protein-protein complex is PfAMA1-PfRON2, which is involved in malarial parasite invasion into human red blood cells. A thorough understanding of the interactions between these macromolecular binding partners is absolutely necessary to design better therapeutics to fight against the age-old disease affecting mostly under-developed nations. Although crystal structures of several PfAMA1-PfRON2 complexes have been solved to understand the molecular interactions between these two proteins, the mechanistic aspects of the domain II loop-PfRON2 association is far from clear. The current work investigates a crucial part of the recognition event; i.e., how the domain II loop of PfAMA1 exerts its effect on the alpha helix of the PfRON2, thus influencing the overall kinetics of this intricate recognition phenomenon. To this end, we have conducted thorough computational investigation of the dynamics and free energetics of domain II loop closing processes using molecular dynamics simulation. The computational results are validated by systematic alanine substitutions of the PfRON2 peptide helix. The subsequent evaluation of the binding affinity of Ala-substituted PfRON2 peptide ligands by surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) provides a rank of the relative importance of the residues in context. Our combined (computational and experimental) investigation has revealed that the domain II loop of PfAMA1 is in fact responsible for arresting the PfRON2 molecule from egress, K2027 and D2028 of PfRON2 being the determinant residues for the capturing event. Our study provides a comprehensive understanding of the molecular recognition event between PfAMA1 and PfRON2, specifically in the post binding stage, which potentially can be utilized for drug discovery against malaria.Graphical abstract

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3