The post-transcriptional regulation of TFs in immature motoneurons shapes the axon-muscle connectome

Author:

Guan Wenyue,Bellemin Stéphanie,Bouchet Mathilde,Venkatasubramanian Lalanti,Guillermin Camille,Laurençon Anne,Chérif Kabir,Darmas Aurélien,Godin Christophe,Urdy Séverine,Mann Richard S.,Enriquez JonathanORCID

Abstract

SUMMARYTemporal factors expressed sequentially in neural stem cells, such as RNA binding proteins (RBPs) or transcription factors (TFs), are key elements in the generation of neuronal diversity. The molecular mechanism underlying how the temporal identity of stem cells is decoded into their progeny to generate neuronal diversity is largely unknown. Here, we used genetic and new computational tools to study with precision the unique fates of the progeny of a stem cell producing 29 morphologically distinct leg motoneurons (MNs) in Drosophila. We identified 40 TFs expressed in this MN lineage, 15 of which are expressed in a combinatorial manner in immature MNs just before their morphological differentiation. By following TF expression patterns at an earlier developmental stages, we discovered 19 combinatorial codes of TFs that were progressively established in immature MNs as a function of their birth order. The comparison of the RNA and protein expression profiles of 6 TFs revealed that post-transcriptional regulation plays an essential role in shaping these TF codes. We found that the two known RBPs, Imp and Syp, expressed sequentially in neuronal stem cells, are upstream regulators of the TF codes. Both RBPs are key players in the construction of axon-muscle connectome through the post-transcriptional regulation of 5 of the 6 TFs examined. By deciphering the function of Imp in the immature MNs with respect to the stem cell of the same lineage, we propose a model where RBPs shape the morphological fates of MNs through post-transcriptional regulation of TF codes in immature MNs. Taken together, our study reveals that immature MNs are plastic cells that have the potential to acquire many morphological fates. The molecular basis of MN plasticity originates in the broad expression of different TF mRNA, that are post-transcriptionally shaped into TF codes by Imp and Syp, and potentially by other RBPs that remain to be discovered, to determine their morphological fates.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3