Aurora B/C-dependent phosphorylation promotes Rec8 cleavage in mammalian oocytes

Author:

Nikalayevich ElviraORCID,El Jailani Safia,Cladière Damien,Gryaznova YuliaORCID,Fosse Célia,Touati Sandra A.ORCID,Buffin Eulalie,Wassmann KatjaORCID

Abstract

AbstractTo generate haploid gametes, cohesin is removed in a step-wise manner from chromosome arms in meiosis I and the centromere region in meiosis II, to segregate chromosomes and sister chromatids, respectively. Meiotic cohesin removal requires cleavage of the meiosis-specific kleisin subunit Rec8 by the protease Separase[1, 2]. In yeast, Rec8 is kept in a non-phosphorylated state by the action of PP2A-B56, which is localised to the centromere region, thereby preventing cohesin removal from this region in meiosis I[3-5]. However, it is unknown whether Rec8 has to be equally phosphorylated for cleavage, and whether centromeric cohesin protection is indeed brought about by dephosphorylation of Rec8 preventing cleavage, in mammalian meiosis. The identity of one or several potential Rec8-specific kinase(s) is also unknown. This is due to technical challenges, as Rec8 is poorly conserved preventing a direct translation of the knowledge gained from model systems such as yeast and C. elegans to mammals, and additionally, there is no turn-over of Rec8 after cohesion establishment, preventing phosphomutant analysis of functional Rec8. To address how Rec8 cleavage is brought about in mammals, we adapted a biosensor for Separase to study Rec8 cleavage in single mouse oocytes by live imaging, and identified phosphorylation sites promoting cleavage. We found that Rec8 cleavage by Separase depends on Aurora B/C kinase activity, and identified a residue promoting cleavage and being phosphorylated in an Aurora B/C kinase-dependent manner. Accordingly, inhibition of Aurora B/C kinase during meiotic maturation impairs endogenous Rec8 phosphorylation and chromosome segregation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3