High-frequency hearing is required for generating a topographic map of auditory space in the mouse superior colliculus

Author:

Si Yufei,Ito Shinya,Litke Alan M.,Feldheim David A.

Abstract

AbstractA topographic map of auditory space is a feature found in the superior colliculus (SC) of many species, including CBA/CaJ mice. In this genetic background, high-frequency monaural spectral cues and interaural level differences are used to generate spatial receptive fields (RFs) that form a topographic map along the azimuth. Unfortunately, C57BL/6 mice, a strain widely used for transgenic manipulation, display age-related hearing loss (AHL) due to an inbred mutation in the Cadherin 23 gene (Cdh23) that affects hair cell mechanotransduction. To overcome this problem, researchers have used young C57BL/6 mice in their studies, as they have been shown to have normal hearing thresholds. However, important details of the auditory response characteristics of the SC such as spectral responses and spatial localization, have not been characterized in young C57BL/6 mice.Here we show that 2-4-month C57BL/6 mice lack neurons with frontal auditory RFs and therefore lack a topographic representation of auditory space in the SC. Analysis of the spectrotemporal receptive fields (STRFs) of the SC auditory neurons shows that C57BL/6 mouse SC neurons lack the ability to detect the high-frequency (>40kHz) spectral cues that are needed to compute frontal RFs. We also show that crossing C57BL/6 mice with CBA/CaJ mice or introducing one copy of the wild-type Cdh23 to C57BL/6 mice rescues the high-frequency hearing deficit and improves the topographic map of auditory space. Taken together, these results demonstrate the importance of high-frequency hearing in computing a topographic map of auditory space.Significance StatementDespite the strain’s age-dependent hearing loss, C57BL/6 mice are widely used in auditory studies because of the development of transgenic reporter and Cre lines in this genetic background. Here we examined the topographic map of auditory space and spectrotemporal properties of neurons in the SC of C57BL/6 mice. We found an early-onset high-frequency hearing deficit that results in the loss of SC neurons with frontal RFs and, consequently, an absence of a topographic map of auditory space. These findings stress the importance of high-frequency hearing in generating spatially restricted receptive fields and serve as a caution to researchers that doing auditory-related research using the C57BL/6 genetic background may not be representative of true wild-type mice.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3