Neuroanatomical correlates of working memory performance in Neurofibromatosis 1

Author:

Sawyer Cameron,Green Jonathan,Lim Ben,Pobric Gorana,Jung JeYoung,Vassallo Grace,Evans D. Gareth,Stagg Charlotte J,Parkes Laura MORCID,Stivaros Stavros,Muhlert Nils,Garg Shruti

Abstract

ABSTRACTBackgroundNeurofibromatosis 1 (NF1) is a single-gene neurodevelopmental disorder associated with cognitive and behavioural impairments, particularly with deficits in working memory. This study investigates the cerebral volumetric differences in adolescents with NF1 as compared to typically developing controls and how working memory task performance is associated with these differences.Methods31 adolescents aged 11-17 years were compared to age and sex-matched controls. NF1 subjects were assessed using detailed measurement of working memory at baseline followed by a 3T MR scan. A voxel-based morphometry approach was used to estimate the total and regional gray matter volumetric differences between the NF1 and control groups. The working memory metrics were subjected to a principal component analysis (PCA) approach. Finally, we examined how the components derived from PCA correlated with the changes in gray matter volume in the NF1 group, after adjusting for age, sex and total intracranial volume.ResultsThe NF1 cohort showed increased gray matter volumes in the thalamus, globus pallidus, caudate, putamen, dorsal midbrain and cerebellum bilaterally as compared to controls. The PCA yielded three independent behavioural components reflecting high memory load, low memory load and auditory working memory. Correlation analyses revealed that increased volume of the inferior lateral parietal cortex was associated with poorer performance on the high working memory load tasks. Increased volume of posterior cingulate cortex, a key component of the default mode network (DMN) was significantly associated with poorer performance on low working memory load tasks.DiscussionThis is the first study to examine the neuroanatomical correlates of working memory in NF1 adolescents. Consistent with prior literature we show larger subcortical brain volumes in in the NF1 cohort. The strong association between posterior cingulate cortex volume and performance on low memory load conditions supports previously suggested hypotheses of deficient DMN structural development, which in turn may contribute to the cognitive impairments in NF1.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3