TRAIP regulates DNA double-strand break-induced ATM activation

Author:

Gleich Tobias,Quadroni Manfredo,Yigit Gökhan,Wollnik Bernd,Huber Marcel,Pich ChristineORCID,Hohl Daniel

Abstract

ABSTRACTDNA double-strand breaks (DSBs) affect cell survival and genomic integrity. They are repaired by a highly coordinated process called the DNA damage response. Here, we report that the ubiquitously expressed nucleolar E3 ubiquitin ligase TRAF-interacting protein (TRAIP), previously shown to regulate the spindle assembly checkpoint, has an essential role during the DNA damage response. A biotinylation proximity screening assay (BioID) identified Ku80, Ku70, SMARCA5 (SNF2H) and DNA-PKcs as novel TRAIP interactors. Co-immunoprecipitations demonstrated that the interaction of TRAIP with Ku80 was transiently increased while the one with SMARCA5 was strongly decreased after treatment of HeLa cells with neocarzinostatin (NCS). Treatment of fibroblasts from a microcephalic primordial dwarfism patient carrying a hypomorphic TRAIP mutation or shRNA-mediated knockdown of TRAIP in HeLa cells with NCS impaired the activation of ataxia-telangiectasia mutated (ATM), a protein kinase crucial for the DNA damage response. As consequence, the maintenance of γH2AX and Chk2-T68 phosphorylation, two downstream targets of ATM, was significantly abrogated after NCS-inflicted DSBs. DNA repair assays showed that TRAIP inhibits incorrect end utilization during non-homologous end joining. These observations highlight TRAIP as novel regulator of ATM activity in DNA damage signaling.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3