Solvation dynamics-powered structure and function of multi-molecular cellular systems exemplified by non-equilibrium cereblon-degrader-CK1α ternary complex formation

Author:

Wan HongbinORCID,Aravamuthan Vibhas,Williams Sarah,Wartchow CharlesORCID,Duca José S.ORCID,Pearlstein Robert A.ORCID

Abstract

AbstractCellular functions are executed via a form of analog computing that is based on the switchable covalent and non-covalent states of multi-molecular fluxes (i.e., time-dependent species/state concentrations) operating in the non-linear dynamics regime. We and others have proposed that the non-covalent states and state transitions of aqueous fluxes are powered principally by the storage and release of potential energy to/from the anisotropic H-bond network of solvating water (which we refer to as the “solvation field”), which is a key tenet of a first principles theory on cellular structure and function (called Biodynamics) that we outlined previously. This energy is reflected in water occupancy as a function of solute surface position, which can be probed computationally using WATMD software. In our previous work, we used this approach to deduce the structural dynamics of the COVID main protease, including substrate binding-induced enzyme activation and dimerization, and product release-induced dimer dissociation. Here, we examine: 1)The general relationships between surface composition/topology and solvation field properties for both high and low molecular weight (HMW and LMW) solutes.2)The general means by which structural dynamics are powered by solvation free energy, which we exemplify via binding between the E3 ligase CUL4A/RBX1/DDB1/CRBN, LMW degraders, and substrates. We propose that degraders organize the substrate binding surface of cereblon toward complementarity with native and neo substrates, thereby speeding the association rate constant and incrementally slowing the dissociation rate constant.3)Structure-activity relationships (SAR) based on complementarity between the solvation fields of cognate protein-ligand partners exemplified via LMW degraders.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3