Arabidopsis PROTODERMAL FACTOR2 binds lysophosphatidylcholines and transcriptionally regulates phospholipid metabolism

Author:

Wojciechowska Izabela,Mukherjee Thiya,Knox-Brown Patrick,Hu Xueyun,Khosla AashimaORCID,Mathews Graham L.,Thompson Kyle A.,Peery Seth T.,Szlachetko Jagoda,Thalhammer Anja,Hincha Dirk K.,Skirycz AleksandraORCID,Schrick KathrinORCID

Abstract

ABSTRACTPlant homeodomain leucine-zipper IV (HD-Zip IV) transcription factors (TFs) contain an evolutionarily conserved steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain. The START domain is required for TF activity; however, its presumed role as a lipid sensor is not well understood. Here we used tandem affinity purification from Arabidopsis cell cultures to demonstrate that PROTODERMAL FACTOR2 (PDF2), a representative family member which controls epidermal differentiation, recruits lysophosphatidylcholines in a START-dependent manner. In vitro assays with recombinant protein verified that a missense mutation in a predicted ligand contact site reduces lysophospholipid binding. We additionally uncovered that PDF2 controls the expression of phospholipid-related target genes by binding to a palindromic octamer with consensus to a phosphate (Pi) response element. Phospholipid homeostasis and elongation growth were altered in pdf2 mutants according to Pi availability. Cycloheximide chase experiments further revealed a role for START in maintaining protein levels, and Pi limitation resulted in enhanced protein destabilization, suggesting a mechanism by which lipid binding controls TF activity. We propose that the START domain serves as a molecular sensor for membrane phospholipid status in the epidermis. Overall our data provide insights towards understanding how the lipid metabolome integrates Pi availability with gene expression.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3