Complete pan-plastome sequences enable high resolution phylogenetic classification of sugar beet and closely related crop wild relatives

Author:

Sielemann KatharinaORCID,Pucker BoasORCID,Schmidt NicolaORCID,Viehöver Prisca,Weisshaar BerndORCID,Heitkam TonyORCID,Holtgräwe DanielaORCID

Abstract

AbstractBackgroundAs the major source of sugar in moderate climates, sugar-producing beets (Beta vulgaris subsp. vulgaris) have a high economic value. However, the low genetic diversity within cultivated beets requires introduction of new traits, for example to increase their tolerance and resistance attributes – traits that often reside in the crop wild relatives. For this, genetic information of wild beet relatives and their phylogenetic placements to each other are crucial. To answer this need, we sequenced and assembled the complete plastome sequences from a broad species spectrum across the beet genera Beta and Patellifolia, both embedded in the Betoideae (order Caryophyllales). This pan-plastome dataset was then used to determine the wild beet phylogeny in high-resolution.ResultsWe sequenced the plastomes of 18 closely related accessions representing 11 species of the Betoideae subfamily and provided high-quality plastome assemblies which represent an important resource for further studies of beet wild relatives and the diverse plant order Caryophyllales. Their assembly sizes range from 149,723 bp (Beta vulgaris subsp. vulgaris) to 152,816 bp (Beta nana), with most variability in the intergenic sequences. Combining plastome-derived phylogenies with read-based treatments based on mitochondrial information, we were able to suggest a unified and highly confident phylogenetic placement of the investigated Betoideae species.Our results show that the genus Beta can be divided into the two clearly separated sections Beta and Corollinae. Our analysis confirms the affiliation of B. nana with the other Corollinae species, and we argue against a separate placement in the Nanae section. Within the Patellifolia genus, the two diploid species Patellifolia procumbens and Patellifolia webbiana are, regarding the plastome sequences, genetically more similar to each other than to the tetraploid Patellifolia patellaris. Nevertheless, all three Patellifolia species are clearly separated.ConclusionIn conclusion, our wild beet plastome assemblies represent a new resource to understand the molecular base of the beet germplasm. Despite large differences on the phenotypic level, our pan-plastome dataset is highly conserved. For the first time in beets, our whole plastome sequences overcome the low sequence variation in individual genes and provide the molecular backbone for highly resolved beet phylogenomics. Hence, our plastome sequencing strategy can also guide genomic approaches to unravel other closely related taxa.

Publisher

Cold Spring Harbor Laboratory

Reference71 articles.

1. Evolutionary and Biogeographic Insights on the Macaronesian Beta-Patellifolia Species (Amaranthaceae) from a Time-Scaled Molecular Phylogeny;PLoS ONE,2016

2. Origin of the ‘Weisse Schlesische Rübe’ (white Silesian beet) and resynthesis of sugar beet;Euphytica,1989

3. Broadening the genetic base of sugar beet: introgression from wild relatives;Euphytica,2007

4. Biancardi E , Lewellen RT. History and Current Importance . In: Biancardi E , Panella LW , McGrath JM , editors. Beta maritima [Internet]. Cham: Springer International Publishing; 2020 [cited 2021 Jul 28]. p. 1–48. Available from: http://link.springer.com/10.1007/978-3-030-28748-1_1

5. Crop wild relative populations of Beta vulgaris allow direct mapping of agronomically important genes;Nat Commun,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3