An Anatomically and Hemodynamically Realistic Simulation Framework for 3D Ultrasound Localization Microscopy

Author:

Belgharbi HatimORCID,Porée JonathanORCID,Damseh RafatORCID,Perrot VincentORCID,Milecki Léo,Delafontaine-Martel PatrickORCID,Lesage FrédéricORCID,Provost JeanORCID

Abstract

AbstractThe resolution of 3D Ultrasound Localization Microscopy (ULM) is determined by acquisition parameters such as frequency and transducer geometry but also by microbubble (MB) concentration, which is also linked to the total acquisition time needed to sample the vascular tree at different scales. In this study, we introduce a novel 3D anatomically- and physiologically-realistic ULM simulation framework based on two-photon microscopy (2PM) and in-vivo MB perfusion dynamics. As a proof of concept, using metrics such as MB localization error, MB count and network filling, we could quantify the effect of MB concentration and PSF volume by varying probe transmit frequency (3-15 MHz). We find that while low frequencies can achieve sub-wavelength resolution as predicted by theory, they are also associated with prolonged acquisition times to map smaller vessels, thus limiting effective resolution. A linear relationship was found between maximal MB concentration and inverse point spread function (PSF) volume. Since inverse PSF volume roughly scales cubically with frequency, the reconstruction of the equivalent of 10 minutes at 15 MHz would require hours at 3 MHz. We expect that these findings can be leveraged to achieve effective reconstruction and serve as a guide for choosing optimal MB concentrations in ULM.

Publisher

Cold Spring Harbor Laboratory

Reference41 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3