Immunoprecipitation-targeted proteomics assays facilitate rational development of SARS-CoV-2 serological diagnostics

Author:

Fu ZhiqiangORCID,Rais YasmineORCID,Drabovich Andrei P.ORCID

Abstract

ABSTRACTCurrent design of serological tests employs conservative immunoassay approaches and is often focused on convenience, speed of manufacturing, and affordability. Limitations of such serological tests include semi-quantitative measurements, lack of standardization, potential cross-reactivity, and inability to distinguish between antibody subclasses. As a result of cross- reactivity, diagnostic specificity of serological antibody tests may not be sufficiently high to enable screening of the general asymptomatic populations for the acquired immunity against low-prevalence infectious diseases, such as COVID-19. Likewise, lack of a single standard for assay calibration limits inter-laboratory and international standardization of serological tests. In this study, we hypothesize that combination of immunoaffinity enrichments with targeted mass spectrometry measurements would enable rational design of serology diagnostics of infectious diseases, such as COVID-19. The same instrumental platform allows for sensitive and specific measurements of viral protein antigens, as wells as anti-viral antibodies circulating in human serum. Our proof-of-concept immunoprecipitation - parallel reaction monitoring (IP-PRM) assays quantified NCAP_SARS2 protein with a limit of detection of 313 pg/mL in serum. In addition, a multiplex IP-selected reaction monitoring (IP-SRM) assay facilitated differential quantification of anti-SARS-CoV-2 antibody isotypes and subclasses in patient sera. Simultaneous evaluation of numerous antigen-antibody subclass combinations revealed a receptor-binding domain (RBD)-IgG1 as a combination with the highest diagnostic specificity and sensitivity. Anti-RBD IgG1, IgG3, IgM and IgA1 subclasses, but not IgG2, IgG4 and IgA2, were found elevated in COVID-19-positive sera. Synthetic heavy isotope-labeled peptide internal standards as calibrators revealed elevated anti-RBD IgG1 in positive (510-6700 ng/mL; 0.02-0.22% of total serum IgG1) versus negative sera (60 [interquartile range 41-81] ng/mL). Likewise, anti-RBD IgM was elevated in positive (190-510 ng/mL; 0.06-0.16% of total serum IgM) versus negative sera (76 [31-108] ng/mL). Further validation of immunoprecipitation-targeted proteomics assays as a platform for serological assays will facilitate standardization and improvement of the existing serological tests, enable rational design of novel tests, and offer tools for comprehensive investigation of antibody isotype and subclass cooperation in immunity response.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3