Integrating de novo and inherited variants in over 42,607 autism cases identifies mutations in new moderate risk genes

Author:

Zhou Xueya,Feliciano Pamela,Wang Tianyun,Astrovskaya Irina,Shu Chang,Hall Jacob B.,Obiajulu Joseph U.,Wright Jessica,Murali Shwetha,Xu Simon Xuming,Brueggeman Leo,Thomas Taylor R.,Marchenko Olena,Fleisch Christopher,Barns Sarah D.,Snyder LeeAnne Green,Han Bing,Chang Timothy S.,Turner Tychele N.,Harvey William,Nishida Andrew,O’Roak Brian J.,Geschwind Daniel H.,Michaelson Jacob J.,Volfovsky Natalia,Eichler Evan E.,Shen Yufeng,Chung Wendy K.,

Abstract

AbstractDespite the known heritable nature of autism spectrum disorder (ASD), studies have primarily identified risk genes with de novo variants (DNVs). To capture the full spectrum of ASD genetic risk, we performed a two-stage analysis of rare de novo and inherited coding variants in 42,607 ASD cases, including 35,130 new cases recruited online by SPARK. In the first stage, we analyzed 19,843 cases with one or both biological parents and found that known ASD or neurodevelopmental disorder (NDD) risk genes explain nearly 70% of the genetic burden conferred by DNVs. In contrast, less than 20% of genetic risk conferred by rare inherited loss-of-function (LoF) variants are explained by known ASD/NDD genes. We selected 404 genes based on the first stage of analysis and performed a meta-analysis with an additional 22,764 cases and 236,000 population controls. We identified 60 genes with exome-wide significance (p < 2.5e-6), including five new risk genes (NAV3, ITSN1, MARK2, SCAF1, and HNRNPUL2). The association of NAV3 with ASD risk is entirely driven by rare inherited LoFs variants, with an average relative risk of 4, consistent with moderate effect. ASD individuals with LoF variants in the four moderate risk genes (NAV3, ITSN1, SCAF1, and HNRNPUL2, n = 95) have less cognitive impairment compared to 129 ASD individuals with LoF variants in well-established, highly penetrant ASD risk genes (CHD8, SCN2A, ADNP, FOXP1, SHANK3) (59% vs. 88%, p= 1.9e-06). These findings will guide future gene discovery efforts and suggest that much larger numbers of ASD cases and controls are needed to identify additional genes that confer moderate risk of ASD through rare, inherited variants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3