Novelty and uncertainty interact to regulate the balance between exploration and exploitation in the human brain

Author:

Cockburn JeffreyORCID,Man Vincent,Cunningham William,O’Doherty John P.

Abstract

AbstractRecent evidence suggests that both novelty and uncertainty act as potent features guiding exploration. However, these variables are often conflated with each other experimentally, and an understanding of how these attributes interact to regulate the balance between exploration and exploitation has proved elusive. Using a novel task designed to decouple stimulus novelty and estimation uncertainty, we identify separable behavioral and neural mechanisms by which exploration is colored. We show that uncertainty was avoided except when the information gained through exploration could be reliably exploited in the future. In contrast, and contrary to existing theory, novel options grew increasingly attractive relative to familiar counterparts irrespective of the opportunity to leverage their consequences and despite the uncertainty inherent to novel options. These findings led us to develop a formal computational framework in which uncertainty directed choice adapts to the prospective utility of exploration, while novel stimuli persistently draw favor as a result of inflated reward expectations biasing an exploitative strategy. Crucially, novelty is proposed to actively modulate uncertainty processing, effectively blunting the influence of uncertainty in shaping the subjective utility ascribed to novel stimuli. Both behavioral data and fMRI activity sampled from the ventromedial prefrontal cortex, frontopolar cortex and ventral striatum validate this model, thereby establishing a computational account that can not only explain behavior but also shed light on the functional contribution of these key brain regions to the exploration/exploitation trade-off. Our results point to multiple strategies and neural substrates charged with balancing the explore/exploit dilemma, with each targeting distinct aspects of the decision problem to foster a manageable decomposition of an otherwise intractable task.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3