Abstract
AbstractBackgroundDeep brain stimulation (DBS) targeting the subthalamic nucleus (STN) often shows variable outcomes on treating gait dysfunction in Parkinson’s disease (PD). Such variability may stem from which specific neuronal pathways are modulated by DBS and the extent to which those pathways are modulated relative to one another.ObjectiveLeveraging ultra-high-field (7T) imaging data and subject-specific computational models, this study investigated how activation of seven distinct pathways in and around STN, including the pallidopeduncular and pedunculopallidal pathways, affect step length at clinically-optimized STN-DBS settings.MethodsPersonalized computational models were developed for 10 subjects with a clinical diagnosis of PD and with bilateral STN-DBS implants.ResultsThe subject-specific pathway activation models showed a significant positive association between activation of the pedunculopallidal pathway and increased step length, and negative association on step length with pallidopeduncular pathway and hyperdirect pathway activation.ConclusionsThe STN region includes multiple pathways, including fibers of passage to and from the mesencephalic locomotor area. Future clinical optimization of STN-DBS should consider these fibers of passage in the context of treating parkinsonian gait.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献