Parkinsonian gait effects with DBS are associated with pallido-peduncular axis activation

Author:

Goftari MojganORCID,Lu Chiahao,Schmidt Megan,Patriat RemiORCID,Palnitkar Tara,Kim Jiwon,Harel Noam,Johnson Matthew D.,Cooper Scott E.

Abstract

AbstractBackgroundDeep brain stimulation (DBS) targeting the subthalamic nucleus (STN) often shows variable outcomes on treating gait dysfunction in Parkinson’s disease (PD). Such variability may stem from which specific neuronal pathways are modulated by DBS and the extent to which those pathways are modulated relative to one another.ObjectiveLeveraging ultra-high-field (7T) imaging data and subject-specific computational models, this study investigated how activation of seven distinct pathways in and around STN, including the pallidopeduncular and pedunculopallidal pathways, affect step length at clinically-optimized STN-DBS settings.MethodsPersonalized computational models were developed for 10 subjects with a clinical diagnosis of PD and with bilateral STN-DBS implants.ResultsThe subject-specific pathway activation models showed a significant positive association between activation of the pedunculopallidal pathway and increased step length, and negative association on step length with pallidopeduncular pathway and hyperdirect pathway activation.ConclusionsThe STN region includes multiple pathways, including fibers of passage to and from the mesencephalic locomotor area. Future clinical optimization of STN-DBS should consider these fibers of passage in the context of treating parkinsonian gait.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3