Long-term predictions of humoral immunity after two doses of BNT162b2 and mRNA-1273 vaccines based on dosage, age and sex

Author:

Korosec Chapin S.ORCID,Farhang-Sardroodi SuzanORCID,Dick David W.,Gholami Samaneh,Ghaemi Mohammad Sajjad,Moyles Iain R.ORCID,Craig MorganORCID,Ooi Hsu KiangORCID,Heffernan Jane M.ORCID

Abstract

AbstractSummaryBackgroundThe lipid nanoparticle (LNP)-formulated mRNA vaccines are a widely adopted two-dose vaccination public health strategy to manage the COVID-19 pandemic. Clinical trial data has described the immunogeneicity of the vaccine, albeit within a limited study time frame. Our aims were to use a within-host mathematical model for LNP-formulated mRNA vaccines, informed by available clinical trial data, to project a longer term understanding of humoral immunity as a function of vaccine type, dosage amount, age, and sex.MethodsWe developed a mathematical model describing the immunization process of LNP-formulated mRNA vaccines, and fit our model to twenty-two clinical humoral and cytokine BNT162b2 or mRNA-1273 human two-dose vaccination data sets. We incorporated multi-dose effects in our model to specify whether the dosage is standard or low-dose. We further specify the age groups 18-55, 56-70, and 70+ in our fits for two-standard doses of mRNA-1273, and sex in our fits for two-standard doses of BNT162b2. We used non-linear mixed effect models to fit to all similar data types (e.g. standard two-dose BNT162b2 or mRNA-1273, or two low-dose mRNA-1273). Therefore, in our fits all estimated parameters are statistically correlated, which allowed us to determine the underlying ‘population-dynamics’ structure common to a data type. We therefore made accurate long-term predictions informed by all clinical data used in this study.FindingsWe estimate that two standard doses of either mRNA-1273 or BNT162b2, with dosage times separated by the company-mandated intervals, results in individuals loosing more than 99% humoral immunity relative to peak immunity by eight months following the second dose. We predict that within an eight month period following dose two (corresponding to the CDC time-frame for administration of a third dose), there exists a period of time longer than one month where an individual has less then 99% humoral immunity relative to peak immunity, regardless of which vaccine was administered. We further find that age has a strong influence in maintaining humoral immunity; by eight months following dose two we predict that individuals aged 18-55 have a four-fold humoral advantage compared to aged 56-70 and 70+ individuals. We find that sex has little effect on the vaccine uptake and long-term IgG counts. Finally, we find that humoral immunity generated from two low doses of mRNA-1273 decays substantially slower relative to peak immunity gained than compared to two standard doses of either mRNA-1273 or BNT162b2.InterpretationFor the two dose mRNA vaccines, our predictions highlight the importance of the recommended third booster dose in order to maintain elevated levels of antibodies. We further show that age plays a critical role in determining the antibody levels. Hence, a third booster dose may confer an immuno-protective advantage in older individuals.FundingThis research is supported by NSERC Discovery Grant (RGPIN-2018-04546), NSERC COVID-19 Alliance Grant ALLRP 554923-20, CIHR-Fields COVID Immunity Task Force, NRC Pandemic Response Challenge Program Grant No. PR016-1.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3