A hyper-immunogenic and slow-growing fungal strain induces a murine granulomatous response to cryptococcal infection

Author:

Telzrow Calla L.ORCID,Righi Shannon EsherORCID,Castro-Lopez Natalia,Campuzano Althea,Brooks Jacob T.,Carney John M.,Wormley Floyd L.ORCID,Alspaugh J. AndrewORCID

Abstract

ABSTRACTMany successful pathogens cause latent infections, remaining dormant within the host for years but retaining the ability to reactivate to cause symptomatic disease. The human opportunistic pathogen Cryptococcus neoformans is a ubiquitous yeast that establishes latent pulmonary infections in immunocompetent individuals upon fungal inhalation from the environment. These latent infections are frequently characterized by granulomas, or foci of chronic inflammation, that contain dormant cryptococcal cells. Immunosuppression causes these granulomas to break down and release viable fungal cells that proliferate, disseminate, and eventually cause lethal cryptococcosis. This course of C. neoformans dormancy and reactivation is understudied due to limited models, as chronic pulmonary granulomas do not typically form in most mouse models of cryptococcal infection. Here, we report that a previously characterized Cryptococcus-specific gene which is required for host-induced cell wall remodeling, MAR1, inhibits murine granuloma formation. Specifically, the mar1Δ loss-of-function mutant strain induces mature pulmonary granulomas at sites of infection dormancy in mice. Our data suggest that the combination of reduced fungal burden and increased immunogenicity of the mar1Δ mutant strain stimulates a host immune response that contains viable fungi within granulomas. Furthermore, we find that the mar1Δ mutant strain has slow growth and hypoxia resistance phenotypes, which may enable fungal persistence within pulmonary granulomas. Together with the conventional primary murine infection model, latent murine infection models will advance our understanding of cryptococcal disease progression and define fungal features important for persistence in the human host.

Publisher

Cold Spring Harbor Laboratory

Reference63 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3