Deep Heterogeneous Dilation of LSTM for Transient-phase Gesture Prediction through High-density Electromyography: Towards Application in Neurorobotics

Author:

Sun Tianyun,Hu Qin,Libby Jacqueline,Atashzar S. FarokhORCID

Abstract

AbstractDeep networks have been recently proposed to estimate motor intention using conventional bipolar surface electromyography (sEMG) signals for myoelectric control of neurorobots. In this regard, Deepnets are generally challenged by long training times (affecting practicality and calibration), complex model architectures (affecting the predictability of the outcomes), and a large number of trainable parameters (increasing the need for big data). Capitalizing on our recent work on homogeneous temporal dilation in a Recurrent Neural Network (RNN) model, this paper proposes, for the first time, heterogeneous temporal dilation in an LSTM model and applies that to high-density surface electromyography (HD-sEMG), allowing for the decoding of dynamic temporal dependencies with tunable temporal foci. In this paper, a 128-channel HD-sEMG signal space is considered due to the potential for enhancing the spatiotemporal resolution of human-robot interfaces. Accordingly, this paper addresses a challenging motor intention decoding problem of neurorobots, namely, transient intention identification. Our approach uses only the dynamic and transient phase of gesture movements when the signals are not stabilized or plateaued, which can significantly enhance the temporal resolution of human-robot interfaces. This would eventually enhance seamless real-time implementations. Additionally, this paper introduces the concept of “dilation foci” to modulate the modeling of temporal variation in transient phases. In this work a high number (e.g., 65) of gestures is included, which adds to the complexity and significance of the understudied problem. Our results show state-of-the-art performance for gesture prediction in terms of accuracy, training time, and model convergence.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3