Unravelling the role of thyroid hormones in seasonal neuroplasticity in European Starlings (Sturnus vulgaris)

Author:

Orije JasmienORCID,Raymaekers Sander R.,Majumadar Gaurav,De Groof GeertORCID,Jonckers ElisabethORCID,Ball Gregory F.ORCID,Verhoye MarleenORCID,Darras Veerle M.ORCID,Van der Linden AnnemieORCID

Abstract

1AbstractThyroid hormones clearly play a role in the seasonal regulation of reproduction, but any role they might play in song behavior and the associated seasonal neuroplasticity in songbirds remains to be elucidated. To pursue this question, we first established seasonal patterns in the expression of thyroid hormone regulating genes in male European starlings employing in situ hybridization methods. Thyroid hormone transporter LAT1 expression in the song nucleus HVC was elevated during the photosensitive phase, pointing towards an active role of thyroid hormones during this window of possible neuroplasticity. In contrast DIO3 expression was high in HVC during the photostimulated phase, limiting the possible effect of thyroid hormones to maintain song stability during the breeding season. Next, we studied the effect of hypothyroidism on song behavior and neuroplasticity using in vivo MRI. Hypothyroidism inhibited the photostimulation-induced increase in testosterone, confirming the role of thyroid hormones in activating the hypothalamic–pituitary–gonadal (HPG) axis. Surprisingly, apart from the myelination of several tracts during the photostimulated phase, most neuroplasticity related to song production was unaffected by hypothyroidism. Remarkably, T3 plasma concentrations were negatively correlated to the microstructural changes in several song control nuclei. Potentially, a global reduction of circulating thyroid hormones during the photosensitive period is necessary to lift the brake imposed by the photorefractory period, whereas local fine-tuning of thyroid hormone concentrations through LAT1 could activate underlying neuroplasticity mechanisms. Given the complexity of thyroid hormone effects, this study is a steppingstone to disentangle the influence of thyroid hormones on seasonal neuroplasticity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3