Stretch-induced endogenous electric fields drive neural crest directed collective cell migration in vivo

Author:

Ferreira Fernando,Moreira Sofia,Barriga Elias H.ORCID

Abstract

AbstractDirected collective cell migration (dCCM) is essential for morphogenesis1, 2. Cell clusters migrate in inherently complex in vivo environments composed of chemical, electrical, mechanical as well as topological features. While these environmental factors have been shown to allow dCCM in vitro, our understanding of dCCM in vivo is mostly limited to chemical guidance3. Thus, despite its wide biological relevance, the mechanisms that guide dCCM in vivo remain unclear. To address this, we study endogenous electric fields in relation to the migratory environment of the Xenopus laevis cephalic neural crest, an embryonic cell population that collectively and directionally migrates in vivo4, and whose migratory mode has been linked to cancer invasion and metastasis5. Combining bioelectrical, biomechanical and molecular tools, we show that endogenous electric fields drive neural crest dCCM via electrotaxis in vivo. Moreover, we identify the voltage-sensitive phosphatase 1 (Vsp1) as a key component of the molecular mechanism used by neural crest cells to transduce electric fields into a directional cue in vivo. Furthermore, Vsp1 function is specifically required for electrotaxis, being dispensable for cell motility and chemotaxis. Finally, we reveal that endogenous electric fields are mechanoelectrically established. Mechanistically, convergent extension movements of the neural fold generate membrane tension, which in turn opens stretch-activated channels to mobilise the ions required to fuel electric fields. Overall, our results reveal a mechanism of cell guidance, where electrotaxis emerges from the mechanoelectrical and molecular interplay between neighbouring tissues. More broadly, our data contribute to validate the, otherwise understudied, functions of endogenous bioelectrical stimuli in morphogenetic processes6.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3