Abstract
AbstractOver the course of evolution, the function of the centrosome has been conserved in most eukaryotes, but its core architecture has evolved differently in some clades, as illustrated by the presence of centrioles in humans and a spindle pole body in yeast (SPB). Consistently, the composition of these two core elements has diverged greatly, with the exception of centrin, a protein known to form a complex with Sfi1 in yeast to structurally initiate SPB duplication. Even though SFI1 has been localized to human centrosomes, whether this complex exists at centrioles and whether its function has been conserved is still unclear. Here, using conventional fluorescence and super-resolution microscopies, we demonstrate that human SFI1 is a bona fide centriolar protein localizing to the very distal end of the centriole, where it associates with a pool of distal centrin. We also found that both proteins are recruited early during procentriole assembly and that depletion of SFI1 results in the specific loss of the distal pool of centrin, without altering centriole duplication in human cells, in contrast to its function for SPB. Instead, we found that SFI1/centrin complexes are essential for correct centriolar architecture as well as for ciliogenesis. We propose that SFI1/centrin complexes may guide centriole growth to ensure centriole integrity and function as a basal body.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献