Map7D2 and Map7D1 facilitate MT stabilization through distinct mechanisms to control cell motility and neurite outgrowth

Author:

Kikuchi KojiORCID,Sakamoto Yasuhisa,Uezu Akiyoshi,Yamamoto Hideyuki,Ishiguro Kei-ichiroORCID,Shimamura Kenji,Saito Taro,Hisanaga Shin-ichi,Nakanishi Hiroyuki

Abstract

AbstractMicrotubule (MT) dynamics are modulated through the coordinated action of various MT-associated proteins (MAPs). However, the regulatory mechanisms underlying MT dynamics remain unclear. Herein, we show that MAP7 family protein Map7D2 facilitates MT stabilization to control cell motility and neurite outgrowth. Map7D2, was highly expressed in the brain and testis, directly bound to MTs through its N-terminal half similarly to Map7, and promoted MT stabilization in vitro. Map7D2 localized prominently to the centrosome and partially on MTs in N1-E115 mouse neuroblastoma cells, which expresses two of the four MAP7 family members, Map7D2 and Map7D1. Map7D2 loss decreased the intensity of MTs without affecting stable MT markers acetylated and detyrosinated tubulin, suggesting that Map7D2 stabilizes MTs via direct binding. In addition, Map7D2 loss increased the rate of random cell migration and neurite outgrowth, presumably by disturbing the balance between MT stabilization and destabilization. The other MAP7 family protein expressed in N1-E115, Map7D1, exhibited similar subcellular localization and gene knock-down phenotypes. However, in contrast to Map7D2, Map7D1 was required for the maintenance of acetylated tubulin levels. Taken together, our data suggest that Map7D2 and Map7D1 facilitate MT stabilization through distinct mechanisms for the control of cell motility and neurite outgrowth.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3