BioCompute Objects to communicate a viral detection pipeline with potential for use in a regulatory environment

Author:

Gulzar NailaORCID,Keeney Jonathon,Baker Jack B.,Klempir Ondrej,Hannigan GeoffreyORCID,Bitton Danny A.,Maritz Julia M,King Charles Hadley S.ORCID,Patel Janisha A.,Duncan Paul,Mazumder Raja

Abstract

AbstractThe volume of nucleic acid sequence data has exploded in recent years, and with it, the challenge of finding and transforming relevant data into meaningful information. Processing the abundance of data can require a dynamic ecosystem of customized tools. As analysis pipelines become more complex, there is an increased difficulty in communicating analysis details in a way that is understandable yet of sufficient detail to make informed decisions about results or repeat the analysis. This may be of particular interest to institutions and private companies that need to communicate complex computations in a regulatory environment. To meet this need for standard reporting, the open source BioCompute framework was developed as a standardized mechanism for communicating the details of an analysis in a concise and organized way, and other tools and interfaces were subsequently developed according to the standard. The goal of BioCompute is to streamline the process of communicating computational analyses. Reports that conform to the BioCompute standard are called BioCompute Objects (BCOs). Here, a comprehensive suite of BCOs is presented, representing interconnected elements of a computation that is modeled after those that might be found in a regulatory submission, but which can be shared publicly. Because BCOs are human and machine readable, they can be displayed in customized ways to further improve their utility, and an example of a collapsible format is shown. The work presented here serves as a real world implementation that imitates actual submissions, providing concrete examples. As an example, a pipeline designed to identify viral contaminants in biological manufacturing, such as for vaccines, is developed and rigorously tested to establish a rate of false positive detection, and is described in a BCO report. That pipeline relies on a specially curated database for alignment, and a set of synthetic reads for testing, both of which are also descriptively packaged in their own BCOs. All of the sufficiently complex processes associated with this analysis are therefore represented as BCOs that can be cross-referenced, demonstrating the modularity of BCOs, their ability to organize tremendous complexity, and their use in a lifelike regulatory environment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3