Genomic adaptation of the picoeukaryote Pelagomonas calceolata to iron-poor oceans revealed by a chromosome-scale genome sequence

Author:

Guérin Nina,Ciccarella Marta,Flamant Elisa,Frémont PaulORCID,Mangenot Sophie,Istace BenjaminORCID,Noel BenjaminORCID,Romac SarahORCID,Bachy CharlesORCID,Gachenot Martin,Pelletier EricORCID,Alberti AdrianaORCID,Jaillon OlivierORCID,Cruaud Corinne,Wincker PatrickORCID,Aury Jean-MarcORCID,Carradec QuentinORCID

Abstract

SummaryThe smallest phytoplankton species are key actors in oceans biogeochemical cycling and their abundance and distribution are affected with global environmental changes. Picoalgae (cells <2µm) of the Pelagophyceae class encompass coastal species causative of harmful algal blooms while others are cosmopolitan and abundant in open ocean ecosystems. Despite the ecological importance of Pelagophytes, only a few genomic references exist limiting our capacity to identify them and study their adaptation mechanisms in a changing environment. Here, we report the complete chromosome-scale assembled genome sequence of Pelagomonas calceolata. We identified unusual large low-GC and gene-rich regions potentially representing centromeres. These particular genomic structures could be explained by the absence of genes from a recombination pathway involving double Holiday Junctions. We identified a large repertoire of genes involved in inorganic nitrogen sensing and uptake and several genes replacing iron-requiring proteins potentially explaining P. calceolata ecological success in oligotrophic waters. Finally, based on this high-quality assembly, we evaluated P. calceolata relative abundance in all oceans using environmental Tara Oceans datasets. Our results suggest that P. calceolata is one of the most abundant eukaryotic species in the oceans with a relative abundance favoured by high temperature and iron-poor conditions. Climate change projections based on its relative abundance suggest an extension of the P. calceolata habitat toward the poles at the end of this century. Collectively, these findings reveal the ecological importance of P. calceolata and lay the foundation for a global scale analysis of the adaptation and acclimation strategies of picoalgae in a changing environment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3