MeDUsA: A novel system for automated axon quantification to evaluate neuroaxonal degeneration

Author:

Nitta Yohei,Kawai Hiroki,Osaka Jiro,Hakeda-Suzuki Satoko,Nagai Yoshitaka,Doubková Karolína,Suzuki Takashi,Tavosanis GaiaORCID,Sugie Atsushi

Abstract

AbstractBackgroundDrosophila is an excellent model organism for studying human neurodegenerative diseases (NDs), and the rough eye phenotype (REP) assay is a convenient experimental system for analysing the toxicity of ectopically expressed human disease genes. However, the association between REP and axonal degeneration, an early sign of ND, remains unclear. To address this question, we developed a method to evaluate axonal degeneration by quantifying the number of retinal R7 axons in Drosophila; however, it requires expertise and is time-consuming. Therefore, there is a need for an easy-to-use software that can automatically quantify the axonal degeneration.ResultWe created MeDUsA (a ‘method for the quantification of degeneration using fly axons’), which is a standalone executable computer program based on Python that combines a pre-trained deep-learning masking tool with an axon terminal counting tool. This software automatically quantifies the number of axons from a confocal z-stack image series. Using this software, we have demonstrated for the first time directly that axons degenerate when the causative factors of NDs (αSyn, Tau, TDP-43, HTT) were expressed in the Drosophila eye. Furthermore, we compared axonal toxicity of the representative causative genes of NDs and their pathological alleles with REP and found no significant correlation between them.ConclusionsMeDUsA rapidly and accurately quantifies axons in Drosophila eye. By simplifying and automating time-consuming manual efforts requiring significant expertise, it enables large-scale, complex research efforts on axonal degeneration, such as screening to identify genes or drugs that mediate axonal toxicity caused by ND disease proteins.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3