Interaction Between Transcribing RNA Polymerase and Topoisomerase I Prevents R-loop Formation in E. coli

Author:

Sutormin DmitryORCID,Galivondzhyan AlinaORCID,Musharova OlgaORCID,Travin DmitriiORCID,Rusanova Anastasiya,Obraztsova KseniyaORCID,Borukhov SergeiORCID,Severinov KonstantinORCID

Abstract

AbstractBacterial topoisomerase I (TopoI) removes excessive negative supercoiling and is thought to relax DNA molecules during transcription, replication and other processes. Using ChIP-Seq, we show that TopoI of Escherichia coli (EcTopoI) is co-localized, genome-wide, with RNA polymerase (RNAP) in transcription units. Treatment with transcription elongation inhibitor rifampicin leads to EcTopoI relocation to promoter regions, where RNAP also accumulates. When a 14 kDa RNAP-binding EcTopoI C-terminal domain (CTD) is overexpressed, co-localization of EcTopoI and RNAP along the transcription units is reduced. Pull-down experiments directly show that the two enzymes interact in vivo. Using ChIP-Seq and Topo-Seq, we demonstrate that EcTopoI is enriched and in and upstream (within up to 12-15 Kbs) of highly-active transcription units, indicating that EcTopoI relaxes negative supercoiling generated by transcription. Uncoupling of the RNAP-EcTopoI interaction by either overexpression of EcTopoI CTD or deletion of EcTopoI domains involved in the interaction is toxic for cells and leads to excessive negative plasmid supercoiling. Moreover, the CTD overexpression leads to R-loops accumulation genome-wide, indicating that the RNAP-EcTopoI interaction is required for prevention of R-loops formation.Article HighlightsTopoI colocalizes genome-wide and interacts with RNAP in E. coliDisruption of the interaction between TopoI and RNAP decreases cells viability, leads to hypernegative DNA supercoiling, and R-loops accumulationTopoI and DNA gyrase are enriched, respectively, upstream and downstream of transcription units in accordance with twin-domain model of Liu and WangTopoI recognizes its cleavage sites through a specific motif and by sensing negative supercoiling

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3