Nostoc talks back: Temporal patterns of differential gene expression during establishment of the Anthoceros-Nostoc symbiosis

Author:

Chatterjee PoulamiORCID,Schafran PeterORCID,Li Fay-WeiORCID,Meeks John C

Abstract

AbstractEndosymbiotic association between hornworts and dinitrogen-fixing cyanobacteria form when the plant is limited for combined nitrogen (N). We generated RNA-Seq data to examine the temporal gene expression patterns during culture of N-starved Anthoceros punctatus in the absence and presence of the symbiotically competent cyanobacterium Nostoc punctiforme. Symbiotic nitrogenase activity commenced within 5 days of coculture reaching a maximal by 14 days. In symbiont-free gametophytes, chlorophyll content, chlorophyll fluorescence characteristics and transcription of genes encoding light harvesting and reaction center proteins, as well as the small subunit of ribulose-bisphosphate-carboxylase/oxygenase, were downregulated. The downregulation was complemented in a temporal pattern corresponding to the N. punctiforme provision of N2-derived ammonium. The impairment and complementation of photosynthesis was the most distinctive response of A. punctatus to N-starvation. Increases in transcription of ammonium and nitrate transporters and their N. punctiforme-dependent complementation was also observed. The temporal patterns of differential gene expression indicated N. punctiforme transmits signals to A. punctatus both prior to, and after its provision of fixed N. This is the only known temporal transcriptomic study during establishment of a symbiotic nitrogen-fixing association in this monophyletic evolutionary lineage of land plants.HighlightsTemporal RNA-Seq analysis revealed how symbiotic cyanobacteria impact plant partners’ global gene expression and elucidated the nature of bidirectional communications between the partners

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3