Weight perturbation learning outperforms node perturbation on broad classes of temporally extended tasks

Author:

Züge Paul,Klos Christian,Memmesheimer Raoul-MartinORCID

Abstract

Biological constraints often impose restrictions for plausible plasticity rules such as locality and reward-based rather than supervised learning. Two learning rules that comply with these restrictions are weight (WP) and node (NP) perturbation. NP is often used in learning studies, in particular as a benchmark; it is considered to be superior to WP and more likely neurobiologically realized, as the number of weights and therefore their perturbation dimension typically massively exceed the number of nodes. Here we show that this conclusion no longer holds when we take two biologically relevant properties into account: First, tasks extend in time. This increases the perturbation dimension of NP but not WP. Second, tasks are low dimensional, with many weight configurations providing solutions. We analytically delineate regimes where these properties let WP perform as well as or better than NP. Further we find qualitative features of the weight and error dynamics that allow to distinguish which of the rules underlie a learning process: in WP, but not NP, weights mediating zero input diffuse and gathering batches of subtasks in a trial decreases the number of trials required. The insights suggest new learning rules, which combine for specific task types the advantages of WP and NP. Using numerical simulations, we generalize the results to networks with various architectures solving biologically relevant and standard network learning tasks. Our findings suggest WP and NP as similarly plausible candidates for learning in the brain and as similarly important benchmarks.Statement of significanceNeural networks can learn by first perturbing the network weights or the activity of neurons and thereafter consolidating perturbations that improve the network performance. Weight perturbation learning is considered less efficient, useful and biologically plausible, because there are many more connection weights than neurons, such that generating beneficial perturbations seems less likely. We show that the argument does no longer hold when accounting for two features common in biology: tasks extend in time and the neuronal dynamics are low dimensional. In particular, we find that perturbing the weights is comparably good or better in various biologically relevant and standard network learning applications. This indicates that weight perturbation learning is similarly useful and a plausible candidate for learning in the brain.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3