Synchrony-Division Neural Multiplexing: An Encoding Model

Author:

Rezaei Mohammad R.,Popovic Milos R.ORCID,Prescott Steven AORCID,Lankarany MiladORCID

Abstract

AbstractCortical neurons receive mixed information from collective spiking activities of primary sensory neurons in response to a sensory stimulus. A recent study demonstrated that the time underlying the onset-offset of a tactile stimulus and its varying intensity can be respectively represented by synchronous and asynchronous spikes of S1 neurons in rats. This evidence capitalized on the ability of an ensemble of homogeneous neurons to multiplex, a coding strategy that was referred to as synchrony division multiplexing (SDM). Although neural multiplexing can be conceived by distinct functions of individual neurons in a heterogeneous neural ensemble, the extent to which nearly identical neurons in a homogeneous neural ensemble encode multiple features of a mixed stimulus remains unknown. Here, we present a computational framework to provide a system level understanding on how an ensemble of homogeneous neurons enable SDM. First, we simulate SDM with an ensemble of homogeneous conductance-based model neurons receiving a mixed stimulus comprising slow and fast features. Using feature estimation techniques, we show that both features of the stimulus can be inferred from the generated spikes. Second, we utilize linear nonlinear (LNL) cascade models and calculate temporal filters and static nonlinearities of differentially synchronized spikes. We demonstrate that these filters and nonlinearities are distinct for synchronous and asynchronous spikes. Finally, we develop an augmented LNL cascade model as an encoding model for the SDM by combining individual LNLs calculated for each type of spike. The augmented LNL model reveals that a homogeneous neural ensemble can perform two different functions, namely, temporal- and rate-coding, simultaneously.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3