Abstract
AbstractSpontaneous network bursts, the intervals of intense network-wide activity interleaved with longer periods of sparse activity, are a hallmark phenomenon observed in cortical networks at postnatal developmental stages. Generation, propagation and termination of network bursts depend on a combination of synaptic, cellular and network mechanisms; however, the interplay between these mechanisms is not fully understood. We study this interplay in silico, using a new data-driven framework for generating spiking neuronal networks fitted to the microelectrode array recordings. We recorded the network bursting activity from rat postnatal cortical networks under several pharmacological conditions. In each condition, the function of specific excitatory and inhibitory synaptic receptors was reduced in order to examine their impact on global network dynamics. The obtained data was used to develop two complementary model fitting protocols for automatic model generation. These protocols allowed us to disentangle systematically the modeled cellular and synaptic mechanisms that affect the observed network bursts. We confirmed that the change in excitatory and inhibitory synaptic transmission in silico, consistent with pharmacological conditions, can account for the changes in network bursts relative to the control data. Reproducing the exact recorded network bursts statistics required adapting both the synaptic transmission and the cellular excitability separately for each pharmacological condition. Our results bring new understanding of the complex interplay between cellular, synaptic and network mechanisms supporting the burst dynamics. While here we focused on analysis of in vitro data, our approach can be applied ex vivo and in vivo given that the appropriate experimental data is available.New & NoteworthyWe studied the role of synaptic mechanisms in shaping the neural population activity by proposing a new method to combine experimental data and data-driven computational modeling based on spiking neuronal networks. We analyze a dataset recorded from postnatal rat cortical cultures in vitro under the pharmacological influence of excitatory and inhibitory synaptic receptor antagonists. Our computational model identifies neurobiological mechanisms necessary to reproduce the changes in population activity seen across pharmacological conditions.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献