Long-range connections mirror and link microarchitectural and cognitive hierarchies in the human brain

Author:

Wang Yezhou,Royer Jessica,Park Bo-yongORCID,de Wael Reinder Vos,Larivière Sara,Tavakol Shahin,Rodriguez-Cruces RaulORCID,Paquola Casey,Hong Seok-Jun,Margulies Daniel S.,Smallwood Jonathan,Valk Sofie L.,Evans Alan C.,Bernhardt Boris C.ORCID

Abstract

AbstractCore features of higher-order cognition are hypothesized to be implemented via distributed cortical networks that are linked via long-range connections. However, these connections are biologically expensive, and it is unknown how the computational advantages long-range connections provide overcome the associated wiring costs. Our study investigated this question by exploring the relationship between long-range functional connections and local cortical microarchitecture. Specifically, our work (i) profiled distant cortical connectivity using resting-state fMRI and cortico-cortical geodesic distance mapping, (ii) assessed how long-range connections reflect local brain microarchitecture, and (iii) studied the microarchitectural similarity of regions connected through long-range connections. Analysis of two independent datasets indicated that sensory and motor areas had more clustered short-range connectivity patterns, while transmodal association cortices, including regions of the default mode network, were characterized by distributed, long-range connections. Confirmatory meta-analysis suggested that this topographical difference mirrored a shift in cognitive function, from perception/action towards emotional and social cognitive processing. Analysis of myelin-sensitive in vivo MRI in the same participants as well as post mortem histology and gene expression established that gradients in functional connectivity distance are paralleled by those present in cortical microarchitecture. Moreover, long-range connections were found to link together spatially remote regions of association cortex with an unexpectedly similar microarchitecture. These findings provide novel insights into how the organization of distributed functional networks in transmodal association cortex contribute to cognition, because they suggest that long-range connections link together distant islands of association cortex with similar microstructural features.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3