A transcriptomic axis predicts state modulation of cortical interneurons

Author:

Bugeon StephaneORCID,Duffield Joshua,Dipoppa MarioORCID,Ritoux Anne,Prankerd Isabelle,Nicolout-sopoulos Dimitris,Orme David,Shinn MaxwellORCID,Peng Han,Forrest Hamish,Viduolyte Aiste,Reddy Charu BaiORCID,Isogai Yoh,Carandini MatteoORCID,Harris Kenneth D.ORCID

Abstract

Transcriptomics has revealed the exquisite diversity of cortical inhibitory neurons1–7, but it is not known whether these fine molecular subtypes have correspondingly diverse activity patterns in the living brain. Here, we show that inhibitory subtypes in primary visual cortex (V1) have diverse correlates with brain state, but that this diversity is organized by a single factor: position along their main axis of transcriptomic variation. We combined in vivo 2-photon calcium imaging of mouse V1 with a novel transcriptomic method to identify mRNAs for 72 selected genes in ex vivo slices. We used transcriptomic clusters (t-types)4 to classify inhibitory neurons imaged in layers 1-3 using a three-level hierarchy of 5 Families, 11 Classes, and 35 t-types. Visual responses differed significantly only across Families, but modulation by brain state differed at all three hierarchical levels. Nevertheless, this diversity could be predicted from the first transcriptomic principal component, which predicted a cell type’s brain state modulation and correlations with simultaneously recorded cells. Inhibitory t-types with narrower spikes, lower input resistance, weaker adaptation, and less axon in layer 1 as determined in vitro8 fired more in resting, oscillatory brain states. Transcriptomic types with the opposite properties fired more during arousal. The former cells had more inhibitory cholinergic receptors, and the latter more excitatory receptors. Thus, despite the diversity of V1 inhibitory neurons, a simple principle determines how their joint activity shapes state-dependent cortical processing.

Publisher

Cold Spring Harbor Laboratory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3