Development and Validation of Subject-Specific 3D Human Head Models Based on a Nonlinear Visco-Hyperelastic Constitutive Framework

Author:

Upadhyay KshitizORCID,Alshareef Ahmed,Knutsen Andrew K.,Johnson Curtis L.,Carass Aaron,Bayly Philip V.,Ramesh K.T.

Abstract

AbstractComputational models of the human head are promising tools for the study and prediction of traumatic brain injuries (TBIs). Most available head models are developed using inputs (i.e., head geometry, material properties, and boundary conditions) derived from ex-vivo experiments on cadavers or animals and employ linear viscoelasticity (LVE)-based constitutive models, which leads to high uncertainty and poor accuracy in capturing the nonlinear response of brain tissue under impulsive loading conditions. To resolve these issues, a framework for the development of fully subject-specific 3D human head models is proposed, in which model inputs are derived from the same living human subject using a comprehensive in-vivo brain imaging protocol, and the viscous dissipation-based visco-hyperelastic constitutive modeling framework is employed. Specifically, brain tissue material properties are derived from in-vivo magnetic resonance elastography (MRE), and full-field strain-response of brain under rapid rotational acceleration is obtained from tagged MRI, which is used for model validation. The constitutive model comprises the Ogden hyperelastic strain energy density and the Upadhyay-Subhash-Spearot viscous dissipation potential. The simulated strain-response is compared with experimental data and with predictions from subject-specific models employing two commonly used LVE-based constitutive models, using a rigorous validation procedure that evaluates agreement in spatial strain distribution, temporal strain evolution, and differences in maximum values of peak and average strain. Results show that the head model developed in this work reasonably captures 3D brain dynamics, and when compared to LVE-based models, provides improvements in the prediction of peak strains and temporal strain evolution.

Publisher

Cold Spring Harbor Laboratory

Reference76 articles.

1. “National Center for Health Statistics: Mortality Data on CDC WONDER,” can be found under https://wonder.cdc.gov/mcd.html, n.d.

2. S. Ji , in Encycl. Comput. Neurosci., Springer New York, New York, NY, 2018, pp. 1–4.

3. Finite Element Methods in Human Head Impact Simulations: A Review

4. Development and validation of an advanced anisotropic visco-hyperelastic human brain FE model

5. Group-Wise Evaluation and Comparison of White Matter Fiber Strain and Maximum Principal Strain in Sports-Related Concussion

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3