Temporal and spatial analysis of Plasmodium falciparum genomics reveals patterns of connectivity in a low-transmission district in Southern Province, Zambia

Author:

Moser Kara A.ORCID,Aydemir OzkanORCID,Hennelly Chris,Kobayashi Tamaki,Shields Timothy,Hamapumbu Harry,Musonda Michael,Katowa Ben,Matoba Japhet,Stevenson Jennifer C.,Norris Douglas E.ORCID,Thuma Philip E.ORCID,Wesolowski Amy,Moss William J.ORCID,Bailey Jeffrey A.ORCID,Juliano Jonathan J.ORCID

Abstract

ABSTRACTUnderstanding temporal and spatial dynamics of ongoing malaria transmission will be critical to inform effective interventions and elimination strategies in low transmission regions approaching elimination. Parasite genomics are being used as a tool to monitor epidemiologic trends, including assessing residual transmission across seasons or importation of malaria into these regions. Southern Province, Zambia is a low-transmission setting with seasonal malaria. We genotyped 441 Plasmodium falciparum samples using molecular inversion probes at 1,832 positions across the genome, using dried blood spots collected from 2012-2018 from 8 health centers in the catchment area of Macha Hospital in Choma District. We show that highly related parasites persist across multiple seasons, suggesting that the persistence of malaria is at least in part fueled by parasites “seeding” across the dry season. In addition, we identify clusters of clonal parasites that are dissimilar to the general population, suggesting that introduction of parasites from elsewhere may contribute to the continued malaria burden. We identified signals of population size fluctuation over the course of individual transmission seasons, suggesting a ramp-up of malaria transmission from a season’s beginning. Despite the small spatial scale of the study (2,000 sq km), we identified an inverse relationship between genetic relatedness of parasite pairs and distance between health centers, as well as increased relatedness between specific health centers. These results, leveraging both genomic and epidemiological data, provide a comprehensive picture of fluctuations in parasite populations in this pre-elimination setting of southern Zambia.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3