RAGE antagonist peptide mitigates AGE-mediated endothelial hyperpermeability and accumulation of glycoxidation products in human ascending aortas and in a murine model of aortic aneurysm

Author:

Camillo ChiaraORCID,Abramov Alexey,Allen Philip,Castillero EstibalizORCID,Roberts Emilia,Xue YingfeiORCID,Frasca Antonio,Moreno Vivian,Kurade Mangesh,Robinson Kiera,Spiegel David,LaPar Damien,Grau Juan B,Assoian Richard,Bavaria Joseph E,Takayama Hiroo,Ferrari GiovanniORCID

Abstract

AbstractBackgroundAortic dissection and aneurysm are the result of altered biomechanical forces associated with structural weakening of the aortic wall caused by genetic or acquired factors. Current guidelines recommend replacement of the ascending aorta when the diameter is >5.5 cm in tricuspid aortic valve patients. Aortopathies are associated with altered wall stress and stiffness as well as endothelial cell dysfunction and synthetic vascular smooth muscle cell (VSMC) phenotype. We reported that these mechanisms are mediated by glycoxidation products [Reactive oxygen species (ROS) and Advance Glycation End products (AGE)]. This study addresses the role of glycoxidation on endothelial function and AGE-mediated aortic stiffness.Hypothesis and aimsHere we investigate how circulating glycation products infiltrate the aortic wall via AGE-mediated endothelial hyperpermeability and contribute to both VSMC synthetic phenotype and extracellular matrix (ECM) remodeling in vivo and ex vivo. We also study how RAGE antagonist peptide (RAP) can rescue the effect of AGEs in vitro and in vivo in eNOS−/− vs WT mice.Methods and resultsHuman ascending aortas (n=30) were analyzed for AGE, ROS, and ECM markers. In vitro glycation was obtained by treating VSMC or human and murine aortas with glyoxal. Endothelial permeability was measured under glycation treatment. Vascular stiffness was measured by a pressure myograph comparing wild-type mice ± glyoxal. eNOS−/− mice, a model of increased endothelial permeability, were treated for 28 days with hyperlipidemic diet ± Angiotensin II (1000ng/kg/min) with or without anti-glycation treatment (RAP 20mg/kg). Echo data of aortic diameter were collected. Murine vascular stiffness was measured by a pressure myograph (n=5/group). Glycoxidation products were detected in all human aortas independently of aortic diameter, with stronger accumulation on the lumen and the adventitia layer. AGEs increased endothelial permeability, induce synthetic phenotypic switch in human VSMCs, and inhibit cell migration. RAP pre-treatment rescue the effect of glyoxal on endothelial cells. Ex vivo glycation treatment of murine arteries impacted on ECM and increased stiffness. Aortic stiffness was higher in eNOS−/− vs WT mice. Ang II-mediated aortopathies results in aortic dilation, and AGE/ROS accumulation, which is rescued by RAGE antagonist peptide treatment of eNOS−/− mice.ConclusionsGlycoxidation reaction mediate EC permeability, VSMCs phenotype, and ECM remodeling leading to dysfunctional microstructure of the ascending aorta, altered vascular stiffness and increasing aortic susceptibility to dilation and rupture. Moreover, we show that RAP can mitigate AGE-mediated endothelial hyper-permeability in vitro and impact on ascending aneurysm in vivo

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Apoptotic Cell Death in Bicuspid-Aortic-Valve-Associated Aortopathy;International Journal of Molecular Sciences;2023-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3