The Endocytic Recycling Compartment Serves as a Viral Factory for Hepatitis E Virus

Author:

Bentaleb Cyrine,Hervouet Kévin,Montpellier Claire,Camuzet Charline,Burlaud-Gaillard Julien,Ferrié Martin,Werkmeister Elisabeth,Metzger Karoline,Janampa Nancy Leon,Marlet Julien,Roux Julien,Deffaud Clarence,Goffard AnneORCID,Rouillé Yves,Dubuisson JeanORCID,Roingeard PhilippeORCID,Aliouat-Denis Cécile-Marie,Cocquerel LaurenceORCID

Abstract

AbstractBackground & AimsAlthough Hepatitis E virus (HEV) is the major leading cause of enterically transmitted viral hepatitis worldwide, many gaps remain in the understanding of the HEV lifecycle. Notably, viral factories induced by HEV have not been documented yet and it is currently unknown whether HEV infection leads to cellular membrane modelling as many positive-strand RNA viruses. HEV genome encodes three proteins, the ORF1 replicase, the ORF2 capsid protein and the ORF3 protein involved in virion egress. Previously, we demonstrated that HEV produces different ORF2 isoforms including the virion-associated ORF2i form. Here, we aimed to probe infectious particles and viral factories in HEV-producing cells, using antibodies directed against the different ORF2 isoforms.MethodsWe generated monoclonal antibodies that specifically recognize the particle-associated ORF2i form, and antibodies that recognize the different ORF2 isoforms. We used them in confocal and electron microscopy approaches to probe viral factories in HEV-producing cells. We performed an extensive colocalization study of viral proteins with subcellular markers. We analyzed the impact of silencing Rab11, a central player of the endocytic recycling compartment (ERC).ResultsOne of the antibodies, named P1H1 and targeting the N-terminus of ORF2i, recognized delipidated HEV particles. Confocal and ultrastructural microscopy analyses of HEV-producing cells revealed an unprecedented HEV-induced membrane network containing tubular and vesicular structures. These subcellular structures were enriched in ORF2 and ORF3 proteins, and were dependent on the ORF3 expression and ORF2i capsid protein assembly. Colocalization and silencing analyses revealed that these structures are derived from the ERC.ConclusionsOur study reveals that HEV hijacks the ERC and forms a membrane network of vesicular and tubular structures that might be the hallmark of HEV infection.Lay summaryHepatitis E virus (HEV) is the leading cause of acute hepatitis worldwide but many steps of its lifecycle are still elusive. Thanks to the development of new antibodies that recognize the different forms of the HEV capsid protein, we were able to visualize vesicular and tubular structures that were established by the virus in the host cell. In addition, extensive efforts to identify these structures led us to conclude that HEV hijacks the endocytic recycling compartment of the cell to form this network of vesicles and tubules, which might be the hallmark of HEV infection.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3