Individual Symptom Severity in Adult Autism Spectrum Disorder Predicts Reduction in Right Dorsal Stream Neural Activity During Live Eye-to-Eye Contact

Author:

Hirsch JoyORCID,Zhang Xian,Noah J. Adam,Naples Adam,Wolf Julie M.,McPartland James C.ORCID

Abstract

AbstractBackgroundSocial symptomatology quantified by clinical interview (Autism Diagnostic Observation Schedule, ADOS) and self-report (Social Responsiveness Scale, SRS) indicate symptom severity in autism spectrum disorder (ASD). Reluctance to engage in interpersonal eye contact is a frequently observed behavioral hallmark, though neural bases for these difficulties and relation to symptomatology are not understood. We test the hypothesis that eye contact in ASD activates atypical neural mechanisms that are related to individual differences in symptomatology.MethodsNeural activity represented by hemodynamic signals was acquired by functional near-infrared spectroscopy (fNIRS) during real person-to-person eye contact (confirmed by eye-tracking) for 17 adult ASD (3 female, 14 male) and 19 typically-developed (TD) participants (8 female, 11 male). Assessment of social function was based on ADOS scores for ASD participants and SRS scores for the combined group of ASD and TD participants.ResultsIndividual ADOS scores were negatively correlated (r = -0.69) with individual fNIRS beta-values (representing strength of hemodynamic signals) within clusters in the right dorsal stream regions: somatosensory cortices, angular gyrus, and supramarginal gyrus. Hemodynamic responses in the right dorsolateral prefrontal cortex (DLPFC) were also negatively correlated (r = -0.77) with ADOS scores. Similarly, SRS scores for the combined ASD and TD groups were also negatively correlated (r = -0.58) with somatosensory cortices and the supramarginal gyrus.ConclusionsThese findings are consistent with the hypothesis that neural mechanisms in the dorsal stream and DLPFC are related to social symptomatology and implicate high-level interactive face and eye-processing systems as potential neurobiological markers of ASD.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3