Abstract
AbstractMany pharmaceutically-relevant cell surface receptors are functional only in the context of intact cells. Phage display, while being a powerful method for the discovery of ligands for purified proteins often fails to identify a diverse set of ligands to receptors on a cell membrane mosaic. To understand this deficiency, we examined growth bias in naïve phage display libraries and observed that it fundamentally changes selection outcomes: The presence of growth-biased (parasite) phage clones in a phage library is detrimental to selection and cell-based panning of such biased libraries is poised to yield ligands from within a small parasite population. Importantly, amplification of phage libraries in water-oil emulsions suppressed the amplification of parasites and steered the selection of biased phage libraries away from parasite population. Attenuation of the growth bias through the use of emulsion amplification reproducibly discovers the ligands for cell-surface receptors that cannot be identified in screen that use conventional ‘bulk’ amplification.Abstract FigureFind Ligands in DropletsCanonical phage display selection of ligands for breast cancer cells, which uses bulk amplification (BA) of phage library, reproducibly identified peptide ligands from a ~0.0001% sub-population of the library, which harbors fast-growing phage. Replacing BA by emulsion-amplification (EmA) altered the selection landscape and yielded cell-binding ligands not accessible to conventional phage-display select
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献