The plant-specific SCL30a SR protein regulates ABA-dependent seed traits and salt stress tolerance during germination

Author:

Laloum TomORCID,Carvalho Sofia D.,Martín GuiomarORCID,Richardson Dale N.ORCID,Cruz Tiago M. D.,Carvalho Raquel F.,Stecca Kevin L.,Kinney Anthony J.,Zeidler Mathias,Barbosa Inês C. R.ORCID,Duque PaulaORCID

Abstract

AbstractSR (serine/arginine-rich) proteins are conserved RNA-binding proteins best known as key regulators of splicing, which have also been implicated in other steps of gene expression. Despite mounting evidence for their role in plant development and stress responses, the molecular pathways underlying SR protein regulation of these processes remain elusive. Here we show that the plant-specific SCL30a SR protein negatively regulates abscisic acid (ABA) signaling to control important seed traits and salt stress responses during germination in Arabidopsis. The SCL30a gene is upregulated during seed imbibition and germination, and its loss of function results in smaller seeds displaying enhanced dormancy and elevated expression of ABA-responsive genes as well as of genes repressed during the germination process. Moreover, the knockout mutant is hypersensitive to ABA and high salinity, while transgenic plants overexpressing SCL30a exhibit reduced ABA sensitivity and enhanced tolerance to salt stress during seed germination. An ABA biosynthesis inhibitor rescues the mutant’s enhanced sensitivity to stress, and epistatic analyses confirm that this hypersensitivity requires a functional ABA pathway. Finally, seed ABA levels are unchanged by altered SCL30a expression, indicating that the SR protein positively regulates stress tolerance during seed germination by reducing sensitivity to the phytohormone. Our results reveal a new key player in ABA-mediated control of early development and stress response, and underscore the role of plant SR proteins as important regulators of the ABA signaling pathway.Author SummarySeed germination is a critical step in plant development determining the transition to aerial growth and exposure to a more challenging environment. As such, seeds have evolved mechanisms that prevent germination under adverse conditions, thereby increasing the chances of plant survival. As a general regulator of plant development and a key mediator of stress responses, the hormone abscisic acid (ABA) promotes a prolonged non-germinating state called dormancy, influences seed size and represses germination under environmental stress. Here, we show that an RNA-binding protein, SCL30a, controls seed size, dormancy, germination and tolerance to high salinity in the model plant Arabidopsis thaliana. Loss of SCL30a gene function results in smaller and more dormant seeds with reduced ability to germinate in a high-salt environment; by contrast, SCL30a overexpression produces larger seeds that germinate faster under salt stress. Using a large-scale gene expression analysis, we identify the ABA hormonal pathway as a putative target of SCL30a. We then use genetic and pharmacological tools to unequivocally demonstrate that the uncovered biological functions of SCL30a are achieved through modulation of the ABA pathway. Our study reveals a novel regulator of key seed traits and has biotechnological implications for crop improvement under adverse environments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3