Abstract
AbstractDuring moderate severity drought and low water potential (ψw) stress, poorly understood signaling mechanisms restrict both meristem cell division and subsequent cell expansion. We found that the Clade E Growth-Regulating 2 (EGR2) protein phosphatase and Microtubule Associated Stress Protein 1 (MASP1) differed in their stoichiometry of expression across the root meristem and had opposing effects on root meristem activity at low ψw. Ectopic MASP1 or EGR expression increased or decreased, respectively, root meristem size and root elongation during low ψw stress. This, along with the ability of phosphomimic MASP1 to overcome EGR suppression of root meristem size and observation that ectopic EGR expression had no effect on unstressed plants, indicated that during low ψw EGR activation and attenuation of MASP1 phosphorylation in their overlapping zone of expression determines root meristem size and activity. Ectopic EGR expression also decreased root cell size at low ψw. Conversely, both the egr1-1egr2-1 and egr1-1egr2-1masp1-1 mutants had similarly increased root cell size; but, only egr1-1egr2-1 had increased cell division. These observations demonstrated that EGRs affect meristem activity via MASP1 but affect cell expansion via other mechanisms. Interestingly, EGR2 was highly expressed in the root cortex, a cell type important for growth regulation and environmental response.One Sentence SummarySpatial differences in EGR-MASP1 expression and control of MASP1 phosphorylation adjust root meristem activity to regulate growth during drought stress.The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Paul E. Verslues (paulv@gate.sinica.edu.tw).
Publisher
Cold Spring Harbor Laboratory