Discovery of Aminoglycosides as first in class, nanomolar inhibitors of Heptosyltransferase I

Author:

Milicaj Jozafina,Hassan Bakar A.,Cote Joy M.,Ramirez-Mondragon Carlos A.,Jaunbocus Nadiya,Rafalowski Angelika,Patel Kaelan R.,Muthyala Ramaiah,Sham Yuk Y.,Taylor Erika A.ORCID

Abstract

AbstractA clinically relevant inhibitor for Heptosyltransferase I (HepI) has been sought after for many years and while many have designed novel small-molecule inhibitors, these compounds lack the bioavailability and potency necessary for therapeutic use. Extensive characterization of the HepI protein has provided valuable insight into the dynamic motions necessary for catalysis that could be targeted for inhibition. With the help of molecular dynamic simulations, aminoglycoside antibiotics were shown to be putative inhibitors for HepI and in this study, they were experimentally determined to be the first in-class nanomolar inhibitors of HepI with the best inhibitor demonstrating a Ki of 600 +/- 90 nM. Detailed kinetic analyses were performed to determine the mechanism of inhibition while circular dichroism spectroscopy, intrinsic tryptophan fluorescence, docking, and MD simulations were used to corroborate kinetic experimental findings. Kinetic analysis methods include Lineweaver-Burk, Dixon, Cornish-Bowden and Mixed-Model of Inhibition which allowed for unambiguous assignment of inhibition mechanism for each inhibitor. In this study, we show that neomycin and kanamycin b are competitive inhibitors against the sugar acceptor substrate while tobramycin exhibits a mixed inhibitory effect and streptomycin is non-competitive. MD simulations also allowed us to suggest that the inhibitors bind tightly and inhibit catalytic dynamics due to a major desolvation penalty of the enzyme active site. While aminoglycosides have long been known as a class of potent antibiotics, they also have been scientifically shown to impact cell membrane stability, and we propose that inhibition of HepI contributes to this effect by disrupting lipopolysaccharide biosynthesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3