Cholinergic modulation of distinct inhibitory domains in granule cells of the olfactory bulb

Author:

Villar Pablo S.ORCID,Hu Ruilong,Teitz Batya,Araneda Ricardo C.ORCID

Abstract

SUMMARYEarly olfactory processing relies on a large population of inhibitory neurons in the olfactory bulb (OB), the granule cells (GCs). GCs inhibit the OB output neurons, the mitral and tufted cells (M/TCs), shaping their responses to odors both in the spatial and temporal domains, therefore, the activity of GCs is finely tuned by local and centrifugal excitatory and inhibitory inputs. While the circuit substrates underlying regulatory inputs onto GCs are well-established, how they are locally modulated remains unclear. Here, we examine the regulation of GABAergic inhibition onto GCs by acetylcholine, a main neuromodulatory transmitter released in the OB, by basal forebrain (BF) neurons. In acute brain slices from male and female mice, we show that activation of muscarinic acetylcholine receptors (mAChRs) produces opposing effects on local and centrifugal inhibition onto GCs. By using electrophysiology, laser uncaging and optogenetics we show that the kinetics of GABAergic currents in GCs could be correlated with distal and proximal spatial domains from where they originate, along the GC somatodendritic axis. Proximal inhibition from BF afferents, is suppressed by activation of M2/M4-mAChRs. In contrast, distal local inhibition from deep short axon cells (dSACs) is enhanced by activation of M3-mAChRs. Furthermore, we show that the cholinergic enhancement of distal inhibition in GCs reduces the extent of dendrodendritic inhibition in MCs. Interestingly, the excitatory cortical feedback, which also targets the proximal region of GCs, was not modulated by acetylcholine, suggesting that muscarinic activation shifts the synaptic balance towards excitation in GCs. Together, these results suggest that BF cholinergic inputs to the OB fine tune GC-mediated inhibition of M/TCs by differentially modulating the proximal and distal domains of inhibition in GCs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3