iLQR-VAE : control-based learning of input-driven dynamics with applications to neural data

Author:

Schimel Marine,Kao Ta-Chu,Jensen Kristopher T.ORCID,Hennequin Guillaume

Abstract

AbstractUnderstanding how neural dynamics give rise to behaviour is one of the most fundamental questions in systems neuroscience. To achieve this, a common approach is to record neural populations in behaving animals, and model these data as emanating from a latent dynamical system whose state trajectories can then be related back to behavioural observations via some form of decoding. As recordings are typically performed in localized circuits that form only a part of the wider implicated network, it is important to simultaneously learn the local dynamics and infer any unobserved external input that might drive them. Here, we introduce iLQR-VAE, a novel control-based approach to variational inference in nonlinear dynamical systems, capable of learning both latent dynamics, initial conditions, and ongoing external inputs. As in recent deep learning approaches, our method is based on an input-driven sequential variational autoencoder (VAE). The main novelty lies in the use of the powerful iterative linear quadratic regulator algorithm (iLQR) in the recognition model. Optimization of the standard evidence lower-bound requires differentiating through iLQR solutions, which is made possible by recent advances in differentiable control. Importantly, having the recognition model implicitly defined by the generative model greatly reduces the number of free parameters and allows for flexible, high-quality inference. This makes it possible for instance to evaluate the model on a single long trial after training on smaller chunks. We demonstrate the effectiveness of iLQR-VAE on a range of synthetic systems, with autonomous as well as input-driven dynamics. We further show state-of-the-art performance on neural and behavioural recordings in non-human primates during two different reaching tasks.

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

1. Differentiable MPC for end-to-end planning and control;arXiv preprint,2018

2. Black box variational inference for state space models;arXiv preprint,2015

3. Efficient and modular implicit differentiation;arXiv preprint,2021

4. Learning stable, regularised latent models of neural population dynamics;Network: Computation in Neural Systems,2012

5. Data-driven discovery of coordinates and governing equations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3