A computational model of direction selectivity in Macaque V1 cortex based on dynamic differences between ON and OFF pathways

Author:

Chariker Logan,Shapley Robert,Hawken Michael,Young Lai-Sang

Abstract

AbstractThis paper is about neural mechanisms of direction selectivity (DS) in Macaque primary visual cortex, V1. DS arises in V1 layer 4Cα which receives afferent input from the Magnocellular division of the Lateral Geniculate Nucleus (LGN). LGN itself, however, is not direction-selective. To understand the mechanisms of DS, we built a new computational model (DSV1) of 4Cα. DSV1 is a realistic, large-scale mechanistic model that simulates many V1 properties: orientation selectivity, spatial and temporal tuning, contrast response, and DS. In the model, DS is initiated by the dynamic difference of OFF and ON Magnocellular cell activity that excites the model’s layer 4Cα the recurrent network has no intra-cortical direction-specific connections. In experiments – and in DSV1 -- most 4Cα Simple cells were highly direction-selective but few 4Cα Complex cells had high DS. Furthermore, the preferred directions of the model’s direction-selective Simple cells were invariant with spatial and temporal frequency, in this way emulating the experimental data. The distribution of DS across the model’s population of cells was very close to that found in experiments. Analyzing DSV1, we found that the dynamic interaction of feedforward and intra-cortical synaptic currents led to cortical enhancement of DS for a majority of cells. In view of the strong quantitative agreement between DS in data and in model simulations, the neural mechanisms of DS in DSV1 may be indicative of those in the real visual cortex.Significance StatementMotion perception is a vital part of our visual experience of the world. In monkeys, whose vision resembles that of humans, the neural computation of the direction of a moving target starts in the primary visual cortex, V1, in layer 4Cα that receives input from the eye through the Lateral Geniculate Nucleus (LGN). How Direction-Selectivity (DS) is generated in layer 4Cα is an outstanding unsolved problem in theoretical neuroscience. In this paper, we offer a solution based on plausible biological mechanisms: We present a new large-scale circuit model in which DS originates from slightly different LGN ON/OFF response time-courses and is enhanced in cortex without the need for direction-specific intra-cortical connections. The model’s DS is in quantitative agreement with experiments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3