Abstract
SummaryDifferent regions of the gastrointestinal tract have distinct digestive and absorptive functions, which may be locally disrupted by infection or autoimmune disease. Yet, the mechanisms underlying intestinal regionalization and its dysregulation in disease are not well understood. Here, we used mouse models, transcriptomics, and immune profiling to show that regional epithelial expression of the transcription factor GATA4 prevented adherent bacterial colonization and inflammation in the proximal small intestine by regulating retinol metabolism and luminal IgA. Loss of epithelial GATA4 expression increased mortality in mice infected with Citrobacter rodentium. In active celiac patients with villous atrophy, low GATA4 expression was associated with metabolic alterations, mucosal Actinobacillus, and increased IL-17 immunity. This study reveals broad impacts of GATA4-regulated intestinal regionalization and highlights an elaborate interdependence of intestinal metabolism, immunity, and microbiota in homeostasis and disease.One-sentence summaryEpithelial GATA4 regulates intestinal regionalization of bacterial colonization, metabolic pathways, and tissue immunity.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献