Molecular dynamics simulations of hydrophobic peptides that form β-hairpin structures in solution

Author:

Moharana Tushar Ranjan,Nagaraj Ramakrishnan

Abstract

AbstractPeptides designed with residues that have high propensity to occur in β-turns, form β-hairpin structures in apolar solvents as well in polar organic solvents such as dimethyl sulfoxide (DMSO), methanol and varying percentages of DMSO in chloroform (CHCl3). Presumably due to limited solubility, their conformations have not been investigated by experimental methods in water. We have examined the conformations of such designed peptides that fold into well-defined β-hairpin structures facilitated by β-turns, in the crystalline state and in solution, by Molecular Dynamics Simulations (MDS). The peptides fold into β-hairpin structures in water, starting from extended conformation. In DMSO, folding into β-hairpin structures was not observed, starting from extended conformation. However, when the starting structure is in β-hairpin conformation, unfolding is not observed during MDS in DMSO. Water clearly favours folding of short, hydrophobic peptides into β-turn and β-hairpin conformations from extended structures. DMSO does not have a denaturing effect on short, hydrophobic peptides.

Publisher

Cold Spring Harbor Laboratory

Reference30 articles.

1. β-Hairpin nucleation by Pro-Gly β-turns. Comparison of D-Pro-Gly and L-Pro-Gly sequences in an apolar octapeptide;J. Chem. Soc., Perkin Trans,1998

2. Designed ?-hairpin peptides with defined tight turn stereochemistry

3. A Designed Three Stranded β-Sheet Peptide as a Multiple β-Hairpin Model

4. Design of a peptide hairpin containing a central three-residue loop;J. Am. Chem. Soc,2006

5. Selective Aromatic Interactions in β-Hairpin Peptides

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3