Abstract
The flagellar motor drives the rotation of flagellar filaments, propeling the swimming of flagellated bacteria. The maximum torque the motor generates, the stall torque, is a key characteristics of the motor function. Direct measurements of the stall torque carried out three decades ago suffered from large experimental uncertainties, and subsequently there were only indirect measurements. Here, we applied magnetic tweezer to directly measure the stall torque in E. coli. We precisely calibrated the torsional stiffness of the magnetic tweezer, and performed motor resurrection experiments at stall, accomplishing a precise determination of the stall torque per torque-generating unit (stator unit). From our measurements, each stator passes 2 protons per step, indicating a tight coupling between motor rotation and proton flux.
Publisher
Cold Spring Harbor Laboratory