Leveraging eDNA metabarcoding to characterize nearshore fish communities in Southeast Alaska: Do habitat and tide matter?

Author:

Larson WesORCID,Barry Patrick,Dokai Willie,Maselko Jacek,Olson John,Baetscher Diana

Abstract

AbstractNearshore marine habitats are critical for a variety of commercially important fish species, but assessing fish communities in these habitats is costly and time-intensive. Here, we leverage eDNA metabarcoding to characterize nearshore fish communities near Juneau, Alaska, USA, a high-latitude environment with large tidal swings, strong currents, and significant freshwater input. We investigated whether species richness and community composition differed across three habitat types (sand beaches, eelgrass beds, and rocky shorelines) and between high and low tides. Additionally, we tested whether replication of field samples and PCR reactions influenced either species richness or composition. We amplified a 12S mitochondrial locus in our samples and identified 188 fish amplicon sequence variants (ASVs), corresponding to 21 unique taxa, with approximately half of these resolved to single species. Species richness and composition inferred from eDNA differed substantially among habitats, with rock habitats containing fewer taxa and fewer overall detections than sand and eelgrass habitats. The effect of tide was more subtle and suggested a habitat-tide interaction, with differences in taxa between tides largely isolated to sand habitats. Power analyses indicated that additional field sampling is useful to detect subtle changes in species richness such as those due to tide. PCR replicates typically identified a small number of additional taxa. The most notable result from our study was that shore morphology appeared to substantially influence community structure. Rocky shorelines sloped quickly into deep water, while sand and eelgrass habitats descended much more gradually. We hypothesize that differences in taxa observed among habitats were largely due to lack of mixing between bottom and surface water, providing further evidence that eDNA transport is minimal and that many marine eDNA detections are derived from highly localized sampling locations. We suggest that future studies could explore the extent to which habitat and nearshore physical processes influence eDNA detections.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3