Disruption of nucleoid expanded conformation by toxic aberrant proteins synthesized in Escherichia coli

Author:

Tawde Mangala,Bior Abdelaziz,Feiss Michael,Freimuth PaulORCID

Abstract

AbstractAminoglycoside antibiotics interfere with selection of cognate tRNAs during translation, resulting in the production of aberrant proteins that are the ultimate cause of the antibiotic bactericidal effect. To determine if these aberrant proteins are recognized as substrates by the cell’s protein quality control machinery, we studied whether the heat shock (HS) response was activated following exposure of Escherichia coli to the aminoglycoside kanamycin (Kan). Levels of the HS transcription factor σ32 increased about 10-fold after exposure to Kan, indicating that at least some aberrant proteins were recognized as substrates by the molecular chaperone DnaK. To investigate whether toxic aberrant proteins therefore might escape detection by the QC machinery, we studied model aberrant proteins that had a bactericidal effect when expressed in E. coli from cloned genes. As occurred following exposure to Kan, levels of σ32 were permanently elevated following expression of an acutely toxic 48-residue protein (ARF48), indicating that toxic activity and recognition by the QC machinery are not mutually exclusive properties of aberrant proteins, and that the HS response was blocked in these cells at some step downstream of σ32 stabilization. This block could result from halting of protein synthesis or from radial condensation of nucleoids, both of which occurred rapidly following ARF48 induction. Nucleoids were similarly condensed following expression of toxic aberrant secretory proteins, suggesting that transertion of inner membrane proteins, a process that expands nucleoids into an open conformation that promotes growth and gene expression, was disrupted in these cells. The 48-residue ARF48 protein would be well-suited for structural studies to further investigate the toxic mechanism of aberrant proteins.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3